Detalles del proyecto
Descripción
DESCRIPTION (provided by applicant): Acute myeloid leukemia (AML) can be cured through allogeneic stem cell transplantation (SCT). Unfortunately, 25% of patients will experience relapse after SCT that is usually diagnosed by histologic evaluation of peripheral blood or bone marrow. This method is insensitive and leads to diagnosis of relapse with a high disease burden, which is more difficult to successfully treat. Multi-parameter flow cytometry (MFC) can detect lower burden of disease (0.1-0.01% AML blasts from a mixed population); however, it is expensive and impractical for use in diseases that require frequent monitoring due in part to the need for analyzing bone marrow. In this R21 project, a novel processing strategy will be carried out by an inexpensive, easily manufactured, and highly automated fluidic bio-processor used to select and identify rare AML blasts directly from whole blood to allow more frequent testing to detect MRD at an earlier stage compared to MFC. The bio- processor will consist of modules poised on a fluidic motherboard. The modules and motherboard are made from thermoplastics with the prerequisite microstructures generated via replication. Three modules will be used to affinity-select AML blasts from whole blood using a capture bed comprised of surface immobilized antibodies tethered to the selection channel walls via single-stranded DNA bifunctional linkers. The antibodies will target CD33, CD34 and CD117 expressing blasts. The selection modules will consist of an array of 50-250 microchannels that can process large input volumes (2-10 mL) in
Estado | Finalizado |
---|---|
Fecha de inicio/Fecha fin | 1/9/13 → 31/8/18 |
Enlaces | https://projectreporter.nih.gov/project_info_details.cfm?aid=9337143 |
!!!ASJC Scopus Subject Areas
- Investigación sobre el cáncer
- Biología celular
- Oncología
Huella digital
Explore los temas de investigación que se abordan en este proyecto. Estas etiquetas se generan con base en las adjudicaciones/concesiones subyacentes. Juntos, forma una huella digital única.