Project Details
Description
DESCRIPTION (provided by applicant): Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases with a 5-year survival at a dismal 6% and with 80% of PDAC patients diagnosed at advanced incurable stages. The proposed Cancer Nanotechnology Platform Partnerships (CNPP) grant assembles a team of synthetic/materials chemist (Wenbin Lin, Ph.D.), surgical oncologist/cancer biologist (Jen Jen Yeh, M.D.), and pharmaceutical scientist/biophysicist (Leaf Huang, Ph.D.) to address the critical needs of delivering imaging probes for early diagnosis as well as promising chemotherapeutics for more effective treatment of PDAC. The three established UNC investigators with complementary expertise will take the challenge of developing sensitive diagnostic imaging modalities and effective therapies using targeted nanoparticle technology based on nanoscale metal-organic frameworks (NMOFs) that were recently developed in the Lin lab. NMOFs represent a unique class of hybrid nanomaterials with an ability to combine metal and organic components at a molecular level and to tune their structures and compositions in a modular fashion. The proposed NMOFs contain metal ions or complexes as the MRI imaging cargo and cisplatin or/and Gemcitabine prodrugs as the therapeutic cargoes. When linked to appropriate cell-targeting molecules, the NMOFs can be selectively and efficiently delivered to solid tumors to allow for early diagnosis and effective treatment of pancreatic cancer. To complement this basic science discovery, the Yeh lab has established novel mouse models of PDAC including orthotopic xenografts, the KRAS-driven genetically engineered mouse models (GEMMs), and patient-derived PDAC xenografts. These mouse models of PDAC provide a great opportunity for the testing of NMOFs as an effective delivery vehicle for imaging and chemotherapeutic agents in both primary and metastatic tumors of PDAC. We believe that the proposed research will lead to a new generation of hybrid nanomaterials for early detection and more effective therapy of PDAC, and thus providing new nanotechnology management strategies for cancer patients. RELEVANCE (See instructions): The proposed research addresses the critical needs of early diagnosis and more effective treatment of PDAC. The new nanotechnology innovations are expected to have broad applicability across multiple tumor types and benefit a large number of cancer patients with different types of malignancies.
Status | Finished |
---|---|
Effective start/end date | 3/9/10 → 31/7/16 |
Links | https://projectreporter.nih.gov/project_info_details.cfm?aid=8731183 |
ASJC Scopus Subject Areas
- Cancer Research
- Polymers and Plastics
- Oncology
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.