Electrical Energy Storage System by SMES Method for Ultra-High Power and Energy Density

  • Carnes, Trever T. (PI)

Project Details

Description

ABSTRACT: The Tai-Yang Research Company (TYRC) of Tallahassee, FL in collaboration with Dr. Justin Schwartz of the North Carolina State University (NCSU) in Raleigh, NC propose in this Phase 2 effort to develop the critical technologies necessary for the implementation and operation of an airborne high temperature superconductor (HTS) superconducting magnetic energy storage (SMES) device with particular emphasis on technology development that pushes the limits of energy storage density. In particular, TYRC and NCSU will concentrate on the development of a high critical current (Ic) HTS cable in conjunction with an ultra-light mechanical support structure capable of handling the tremendous hoop forces developed during SMES energization. TYRC has developed a novel, proprietary HTS cable that can operate at both high currents in high magnetic fields while minimizing hysteretic loss. The Phase 1 test results prove beyond a doubt that TYRC's HTS cable has the potential to produce unparalleled Ic's in high background magnetic fields that could enable airborne HTS based SMES systems. The proposed cable technology in combination with its ultra-high strength-to-weight ratio mechanical support system could provide the high energy densities required by SMES to compete with batteries, flywheels, and ultra-capacitors. BENEFIT: The potential exists for a HTS SMES device to surpass batteries, flywheels and ultra-capacitors as a viable, cost-effective option for energy storage both in the military and commercial power sectors. HTS SMES device could immediately be used as power conditioning devices in the commercial power grid system. Also HTS SMES systems could benefit the military by their use as high energy storage for rapid discharge electrical devices.

StatusFinished
Effective start/end date5/12/137/3/16

Funding

  • U.S. Air Force: US$750,000.00

ASJC Scopus Subject Areas

  • Engineering(all)
  • Radiation

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.