Collaborative Research: Regulation of Phytoplankton Dynamics in Mid-Atlantic Estuaries Subject to Climatic Perturbations.

  • Paerl, Hans H.W. (Investigador principal)

Detalles del proyecto

Descripción

Climatic perturbations by drought-flood cycles, tropical storms, and hurricanes are increasingly important in Mid-Atlantic estuaries, leading to ecosystem-scale responses of the plankton system with significant trophic implications. Recent observations support an emerging paradigm that climate dominates nutrient enrichment in these ecosystems, explaining seasonal and interannual variability of phytoplankton floral composition, biomass (chl-a), and primary production (PP). This project will evaluate this paradigm in the two largest estuaries in the United States, Chesapeake Bay (CB) and Albemarle-Pamlico Sound-Neuse River Estuary (APS-NRE) by quantifying responses to climatic perturbations. This project will: (1) resolve long-term trends of plankton biomass/production from high variability driven by climatic forcing, such as drought-flood cycles that generate significant departures from the norm; (2) quantify the role of episodic wind and precipitation events, such as those associated with frontal passages, tropical storms, and hurricanes, that evoke consequential spikes of biomass/production outside the resolution of traditional methods. The field program will focus on event-scale forcing of phytoplankton dynamics by collecting shipboard, aircraft remote sensing, and satellite (SeaWiFS, MODIS-A) data, analyzing extensive monitoring data for CB and APS-NRE to develop context, and quantifying effects of climatic perturbations on phytoplankton dynamics as departures from long-term averages. The rapid-response sampling will be paired with numerical simulations using coupled hydrodynamic biogeochemical models based on the Regional Ocean Modeling System (ROMS). This combination of observations and modeling will be used to explore mechanistic links and test empirical relationships obtained from field data.

Intellectual Merit. Drought-flood cycles, tropical storms, and hurricanes are occurring at increasing severity and frequency, exerting significant pressures on land margin ecosystems. Research and monitoring in these ecosystems has focused singularly on eutrophication for nearly five decades. Recognition of climatic perturbations as the underlying cause of phytoplankton variability represents a significant departure from this singular focus. This project will combine observations and modeling to significantly extend our knowledge of how climate regulates phytoplankton dynamics in estuaries. Progress in calibrating and validating hydrodynamic biogeochemical models with data collected in CB and APS-NRE by this project will lead to predictive capabilities thus far unattained, allowing us to evaluate the paradigm that climatic perturbations regulate phytoplankton dynamics in estuaries.

Broader Impacts: Addressing the effects of climatic perturbations on phytoplankton dynamics in estuaries with a combination of data collection, analysis, and mechanistic modeling has societal benefits for scientists and resource managers. Applications in addition to ?basic? science include the consideration of climatic forcing in designing effective nutrient management strategies. Specific impacts include: (1) quantifying the effects of climatic perturbations on planktonic processes for important estuarine-coastal ecosystems; (2) extending empirically-based water quality criteria forward by enabling predictions of floral composition, chl-a, and PP in changing climate conditions; (3) combining observations and mechanistic models to support scenario analysis, allowing us to distinguish long-term trends from variability imposed by climate. This project will offer a graduate course in physical transport processes and plankton productivity that will benefit from this research, support two Ph.D. students, and train undergraduates in NSF REU and minority outreach programs at HPL-UMCES and IMS-UNC. The main products will be peer-reviewed publications and presentations at scientific meetings. The three PIs maintain active web sites that will be used to distribute results and data.

EstadoFinalizado
Fecha de inicio/Fecha fin1/10/0830/9/13

Financiación

  • National Science Foundation: USD299,312.00

!!!ASJC Scopus Subject Areas

  • Ciencias acuáticas
  • Ecología
  • Oceanografía
  • Ciencias ambientales (todo)

Huella digital

Explore los temas de investigación que se abordan en este proyecto. Estas etiquetas se generan con base en las adjudicaciones/concesiones subyacentes. Juntos, forma una huella digital única.